X2 INTERCEPT ~ EBOOK

15 Biggest
Mistakes In
AzuUure

Avoid costly mistakes &
learn what to do instead

©

X
@)
O
oM
Ll
N
Ll
<
|_
2
=
L
a4
-
N
<

Introduction

Welcome!

Microsoft Azure is a great cloud platform, but even small

missteps can quickly turn into big problems.
At Intercept, we have been in the Azure game for years.
Along the way, we've seen plenty go wrong and repeated

poor decisions costing customers time and money.

That's why we compiled a list of the most common Azure
mistakes so you don’t ever make them (again).

Let’s get started!

Mistake 1
Subscription

One subscription for everything

X
@)
O
oM
Ll
wn
Ll
<
|_
2
>z
L
a4
D)
N
<

Using a single subscription for all your environments (production, staging,

development, etc.) and applications causes more harm than good.

SRR
50008
e
B

B

X
@)
O
oM
Ll
N
Ll
X
=
2
=
L
a4
-
N
<

The solution

With just one subscription, it becomes hard to manage access,
and it's easy to give developers too much control, which can lead
to accidental changes or deletes in production. Azure offers tons
of RBAC options, although they can't fully protect you if

everything lives inside that one box: the subscription.

The solution? You probably guessed it; separate subscriptions per

environment.

Organise resources

How you organise your cloud resources depends on your use case, though some *Service Groups are a new feature as of May 2025. Learn more here.

steps apply across most scenarios. Setting it up correctly keeps your environment

N
@)
O
a1
Ll
wn
Ll
<
|._
N
=
L
[5¢
=)
N
<

tidy, cost-efficient, and easier to manage: Be sure to follow these tips for your next app, and migrate existing resources
along the way.

1. Separate subscriptions per environment

Like Microsoft suggests, use separate subscriptions for development, testing,

and production. This keeps environments isolated, reduces risk, and helps

track costs per environment.

2. Resource Groups per app per environment
Create a Resource Group for each app in each environment. This keeps
resources organised, simplifies access management, and makes monitoring

and cost tracking easier.

3. *Service Groups to organise resources across
subscriptions
Like fancy tags, they allow you to organise and group resources across

subscriptions and resource groups (e.g., “Production apps”, “PCl Scope”,

“MyApp").

https://learn.microsoft.com/en-us/azure/governance/service-groups/overview

Mistake 2: ,
ClickOps Nightmare

Clicking 1t all together

If you ever deployed resources in Azure, you know the Azure Portal is very intuitive and easy to start with.

However, ClickOps doesn’t scale and leads to more problems in the long run. Do you remember or document all

the things you click?

As your systems grow, it quickly turns into a “mission impossible” to remember or document every click.

The result? Mistakes and inconsistent environments.

The solution

Infrastructure as Code (laC) Relying on the Azure Portal to deploy and

Relying on the Azure Portal to deploy and manage infrastructure manually

X
@)
O
oM
Ll
N
Ll
X
=
2
=
L
a4
-
N
<

manage infrastructure manually comes

comes with risks and doesn't scale. Instead, move away from ClickOps to

Infrastructure as Code; a more reliable and efficient way to manage your

with risks.

infrastructure.

There are many laC tools widely available to achieve consistency, a single

4ULIUIVIVIVIVIVIVIVIVIVLIULIDLIULY.
0101010101010101010101010101010102

source of truth, and simplified documentation. All in all, laC makes

010101010101010101010101010101010101010.
010

managing and scaling your infrastructure more efficient.

01¢(
01(
01(

01(

0101010101010101010101 0101010101010101¢
0101010101017 ¥1010107 L0; "1010101010101¢
0101c” 010101 0101 T10101(
0101¢ 40101010107 101010101v L0101
0101c “N101010 /10101077 Lo101(

0101010101v. 1107 401010: «10101010101¢
01010101010101010 4101010101010101010101¢
0101010101010101 0101010101010101010101(

01(
01¢(
011(

01¢(
01(
01(

01(
01(
01(

V4

Do you want to know which IaC tool use for your

workloads? Take a look at the differences

between the available tools such as Azure Bicep,

ARM, Terraform, and more here.

https://5120218.fs1.hubspotusercontent-eu1.net/hubfs/5120218/Premium_Content/Whitepapers/Infrastructure_as_Code/Infrastructure_as_Code-EN.pdf

Mistake 3:
Cost Management

Preventing expensive bills

Sudden, unexpected bills. You open your Azure invoice and blink. Did we really

..

spend that much?

=

Let’s see why and solve that! :
P

.:" L

8 B8

B T

$ F B F 3

- = - E' '

® 2 & 5 3

R

» 2 2 5

F 2 F 2R R PSR IR RO

~ e = - - w B v w = - - £ - - L Ed - r
¢ ; ' » e B 2 » = B & » . £ s » 2 B B B B
" " % P B S P AP AL PRS2 PFE P
v . . E 2 z e u . B B = - 2 2 B = - - - g r
* ® 5 B 3 B S F R PP B OF 3 PF PP O

" " % RO OR AR AR ORI F I
. s = » s P A 2 P a2 F A -

& = u o & B » > = E - . B B £l * - -~ - ? f

» » N B) » E e 2 el = & = » » L ! EG. f '

« ® 5 ™ 5 P N B B » » » 5 F F B

I 8 = 8 R B P P S5 F B F O o

Y 8 = 3 B 3 3 R 5 F 2 F 2 F OO

The solution

Your teams are deploying new resources, spinning up services; and when things are unmanaged, and there’s:

X
@)
O
M
Ll
wn
Ll
&
=
2
=
L
a4
=)
N
<

- No early warning for forecast overrun.

—> A lack of visibility across teams

- Missed anomalies and fraud detection

The result? Your Azure environment quickly spirals out of control, and costs skyrocket.
- Define a spending threshold for a subscription or
resource groups.

- Set multiple thresholds (50%, 80%, 100%) to get early

warnings.

— Track actual or forecasted costs over time; monthly,

quarterly, or yearly.

Out of all tips, this one is maybe the most

— Trigger Action Groups (like email, Functions, or

Webhooks) when thresholds are reached

important: Don’t provision anything until

you set up Azure budgets and alerts.

X
@)
O
a1
L
%)
Ll
X
=
N
=
L
a4
-
N
<

Learn how to manage
and optimise costs In
our Azure Cost
Management
Whitepaper,

Including Azure tools,
discount methods and

INndustry best practices.

Want a lower Azure bill? Check it out.

Download now

BEST PRACTICES AND REAL-LIFE EXAMPLES

https://5120218.fs1.hubspotusercontent-eu1.net/hubfs/5120218/Premium_Content/Whitepapers/Azure_Cost_Management/Whitepaper_Azure_Cost_Management_EN.pdf

Mistake 4:
Tags

Either forgotten or a big mess

N
@)
O
M
L
N
Ll
<
|_
2
oz
L
a4
=)
N
<

As resources get added, managed by more people, it becomes tempting to forget “who made what”.
Which is why you need tags in Azure, which are metadata you apply to your resources. These key-value

pairs let you label and identify resources based on attributes relevant to your organisation.

Inconsistent tags make it hard to answer questions like, for example:

- How much does this app cost us per month?.

- Who ownes this resource?

- How much does the staging environment cost us?

The solution

Apply tags immediately from the start and implement them the right way.

X
@)
O
oM
Ll
N
Ll
X
.
2
=
L
a4
-
N
<

Establish a tagging standard where you define a common set of tags for

every resource like these examples:

- The environment (dev, staging, prod, etc.)

- The owner (contact email)

~ The business unit (finance, sales, etc.)

2 Application (CRM)

—> Cost centre (global)

- Service class (Tier 1, Tier 2, etc.)

Mistake 5:
Naming

Name it anything and regret later

When you first start your journey in Microsoft Azure, it's tempting to name
resources however you like. But the problem is that soon our naming has no
consistency across teams, apps and divisions. Consequently, it becomes hard to
find stuff, slowing down troubleshooting. Not to forget about the added

confusion, and the painful and challenging management of resources.

X
@)
@)
M
Ll
N
Ll
<
l_
2
=
L
a4
=)
N
<

The solution

Implement a Naming Standard:
- Follow Microsoft's recommended naming conventions and
abbreviations. An example is rg-webapp-database-dev.

- Use the Azure Naming Tool to generate consistent names.

The key here is to select a naming convection and stick with it along the
road. And you can even enforce it using Azure Policy (which we explain

next) for consistency across teams.

Note:

Not all resource names are allowed; like

having hyphens in storage account names.

istake 6:
Azure Policy

Standards gone rogue

Another common mistake is when organisations have all these
documents defining their standards, yet no one follows it. Teams
pick and choose what to apply, and before long, your
environment becomes the “Wild West". Without enforcement,
naming conventions, tagging, etc. » configuration rules get

ignored, resulting in a spreading disease of “cloud chaos”.

The solution

Use Azure Policies to enforce naming and tagging standards. Policies can have

X
@)
O
oM
Ll
N
Ll
X
=
2
=
L
a4
-
N
<

multiple effects:

— Multiple versions supported at once

Prevent non-compliant resources from being created (preferred).

Let's say you didn't restrict deployments by

region or workload type. Now, someone > Audit

deploys a resource in a high-cost region or Flag resources as nhon-compliant

spins up a VM much larger than needed.

Before you know it, your bill has jumped, > Modify

compliance requirements are at risk, and Automatically change resources (not recommended).

managing the environment becomes a , o , , . ,
However, enforcing policies aren’t there only for stopping errors; it's also about setting up

nightmare. , ,
resources the way it should be like:

— Enforcing HTTPS over HTTP
- Turning on SQL Data Encryption at rest

Mistake 7:

o monitoring or
lerting

hen everything looks “fine”

When you deploy your resources in Azure, you must not forget about
monitoring and alerts. Because if something goes wrong, you might not

notice until users do, and you would want that; it's always better to catch
issues before they affect your customers.

X
@)
@)
M
Ll
wn
Ll
X
=
2
=
L
o
-
N
<

The solution

— Monitor
Proactively monitor the health and performance of your
applications and resources in Azure Use Azure native-
monitoring tools such as Azure Monitor.

- Alerts
Configure alerts for various metrics and logs that matter to your
apps.

- Notifications

Receive notifications via email, SMS, or other channels.

This lets you act quickly and proactively, keeping your applications

healthy and users happy.

o

ngestion

Ingest first, regret later

We see this mistake occurring often with developers: sending more than
needed to Log Analytics. If all logs are sent straight to Log Analytics,
sensitive information can slip through and the volume of data can explode
quickly. By default, everything gets ingested, which can lead to costs you

would never think of.

X
@)
O
a1
Ll
N
Ll
X
L
o
>z
L
6%
=)
N
<

The solution

— Sample log data to reduce volume; either before sending to

Application Insights (recommended) or during ingestion.

— Set a daily workspace cap in Log Analytics to prevent

unexpected spikes in costs (great during high app activities
or many errors). Note that once the gap you set is reached,
additional logs aren’t captured, leading to data loss.

- Also follow Microsoft's recommendations for logging.

https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-sampling
https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-sampling
https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-sampling#ingestion-sampling-not-recommended
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/daily-cap
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/best-practices-logs

Mistake 9:
Idle resources

Zombie resources

It's easy to spin up resources in Azure, overprovision them or even forget that

they exist...Orphan resources are those created by someone “once upon a

time”, yet nobody knows who.

X
@)
O
oM
Ll
N
Ll
X
=
2
=
L
a4
-
N
<

The issue

Sometimes resources get left behind when part of a larger

system is removed. The usual culprits are:

NN N AN A\

IP addresses no longer attached to machines
Virtual Machines (VMs) that aren’t deallocated
Unattached disks that continue to incur costs
Deleted VMs with backups that haven't expired;
which you keep paying for

Empty subscriptions and resource groups.

Orphaned resources don’t always cost you money, but they can.

At best, they create confusion; at worst, they become a security

risk.

The solution

N
@)
@)
M
Ll
%)
Ll
N
.
2
>
L
fa
i)
N
<

0 Use Azure Cost Advisor to find orphaned
resources underutilised or any other idle

resources.

Q Use Azure Resource Graph to query for
resources that aren’t attached or are in an

unexpected state.

Q Regularly clean up orphaned resources
to reduce cost, improve security and

keep your environment clean.

istake 10:
lot having RBAC
trategies

Too many hands, too much
power

Another mistake we often see is giving everyone high privileges in Azure,
ending up with owners all over the place. What started as convenience now
turned into risk. And instead of a least-privilege model, you’ve got an

environment where a single wrong click can take down production.

The solution

Design your solution with the least privilege in mind, following a

X
@)
O
oM
Ll
wn
Ll
X
.
2
)
L
o
-
N
<

Zero Trust approach where no one is presumably trusted. Start

with built-in roles in Azure and only grant permission that's

needed for the job.

% Use role assignments at the right scope

(management group, subscription, resource

group).

% Limit Owner and Contributor roles to a few trusted

admins.

% Create custom roles if the built-in ones are too

broad

% Review role assignments regularly and remove

what’s no longer needed.

% Use Privileged Identity Management (PIM) for

time-bound access instead of permanent rights.

&

Mistake 11:
SELET[L
Identity

Anything but the safe way

Too often, we still see teams juggling credentials. You create, store, rotate
and revoke them, until someone forgets. Azure SQL is still accessed with
plain SQL Authentication (username + password), and Key Vault with a
client ID and secret. Sooner or later, someone commits a secret by

accident.

X
@)
@)
0
L
"
Ll
X
I
2
>
L
e
)
N
<

The solution

Use Managed Identities in Azure. These allow you to let a
resource run with its “own” identity, managed entirely by Azure.

No usernames, passwords, client IDs, or secrets to worry about.

— Assign a Managed Identity to an App Service, Function, or
other resource.

— Grant that identity the right access to read secrets, connect to
databases, and more.

— Completely passwordless.

- In your code, use DefaultAzureCredential to handle

authentication automatically.

e
O
O
m
L
(2]
L
b
=
v
>
L
o
=)
N
<

Mistake 12:
Not using KeyVault
references

Copy-paste credentials

Too often, we still see teams treating secrets like configuration. Key Vault exists
for a reason, yet credentials end up in env vars and config files, until someone
pushes them to source control or shares them with anyone who can read the app

settings. Over time, that “temporary” shortcut becomes a serious security risk.

X
@)
O
0
L
wn
L
X
I
2
>
L
e
)
N
<

What is Azure Key Vault?

Azure Key Vault is a SaaS service for securely storing and accessing

certificates, keys, and secrets.

O

We can safely store confidential data such as

passwords (called secrets in Azure), cryptographic

keys, certificates, and encryption keys in a

centralised place.

Nonetheless, we still see teams leaving secrets in environment
variables or configuration files. This can lead to accidental exposure,
secrets being committed to source control, or credentials being
accessible to anyone with access to app configuration. Over time, it

becomes a serious security risk.

X
@)
@)
oM
Ll
wn
Ll
<
|_
2
=
L
o
)
N
<

The solution

Use Key Vault References to securely point to secrets from locations
without storing them directly. This keeps sensitive data out of code and

app settings while allowing applications to retrieve secrets at runtime.

% Can be used with App Services, Functions, and other Azure
— Services.

Simplifies secret rotation; update the secret in key Vault, and
% apps automatically get the new value.

Significantly reduces the risk of accidental exposure or commits.

Mistake 13:
Poorly designed
Networks

Doors left wide open

This one’'s more of an architectural mistake, but we've seen one too many flat
network topologies in Azure. Trying to manage it almost feels like you're

stumbling through a maze in the dark.

The solution

A better way is to design a hub-spoke model with a firewall: a central

X
@)
O
oM
Ll
N
Ll
X
=
2
=
L
a4
-
N
<

point of control and the ability to filter or block unwanted traffic.

Q Central control: One place for ingress/egress

and shared services.

Q Consistent filtering: Inspect, allow/deny, and

log traffic centrally.

0 Strong segmentation: Isolate apps/

environments and reduce blast radius.

0 Predictable routing: UDRs force traffic
through the firewall/NVA.

O Standard patterns: Repeatable spokes per

workload/subscription.

0 Better visibility: Clearer flow logs and faster ‘
Net result: your network becomes easier to manage, more secure, and far less

troubleshooting.
chaotic, because it's designed like a system, not grown like a patchwork.

istake 14:
verprovisioning
resources

Scale by guessing

Allocating more resources than you actually need is an easy way to waste
money. We've seen plenty of customers who aren’t sure which SKU they
really need, so they give VMs extra CPUs and memory “just in case” and

end up paying for unused capacity. Add manual scaling on top of that, and

the bill grows fast.

X
@)
O
M
Ll
wn
Ll
N
=
2
>
L
o
-
N
<

The solution

Follow these best practices:

Best practice 1: Authentication best practices
% Right-size first: Begin with the smallest SKU that meets

baseline needs.

% Enable autoscaling: Let demand drive capacity, not guesses.

Best practice 2: Choose the right VM
9 Know your workloads: Analyse what each application
needs in terms of CPU, memory, throughput, and network.
% Use heatmaps: Visualise usage over time to spot
spikes, trends, and persistent waste.
% Test different configurations: Compare smaller and

larger sizes to find a cost-effective sweet spot.

Note:

them down — this can often save 10-15% on the monthly bill.

Best practice 3: Use VM Scale Sets

% Define clear scale rules (metrics +
thresholds).

% Combine with load balancing so traffic

is spread evenly.

Best practice 4: Use Azure Advisor

% Review recommendations regularly:
Right-sizing and cost suggestions
change as workloads change.

% Track savings: Turn quick wins into

ongoing hygiene.

Right-sizing means matching resources to your needs, so you only pay for what you use. A practical

place to start is identifying underused instances (for example ~20-30% CPU utilization) and resizing

istake 15:
ackup and
isaster recove

Hope Is not a plan

Ask yourself:

- What happens if a natural disaster hits your Azure region?
- What are the consequences if your environment goes down, or

customer data is lost?
- How long can your business operate without access to critical

systems or data?

If you're unprepared, any disaster can directly affect business revenue or even

take you out of business.

The solution

X
@)
O
a1
Ll
wn
Ll
X
.
2
)
Ll
a4
)
N
<

9 Use Azure Backup to protect your critical data. It allows you to create and restore backups of
your data and resources, to protect your environment against accidental deletion,

corruption, or malicious attacks.

9 Use Azure Site Recovery to replicate workloads and ensure business continuity in case of an

outage.

% Consider geo- and es zone-redundancy: replicate data across regions (GRS, GTM, ASR) and
distribute workloads across availability zones (ZRS, zone-redundant services) to protect

against regional or zone-level failures.

9 Treat backup and disaster recovery in Azure as a routine part of your environment; by

testing regularly.

X
@)
@)
0
L
"
LL
X
I
-
=
L
e
5
N
<

Final thoughts

Azure offers endless and outstanding possibilities, but managing Azure
comes with plenty of pitfalls. Some of the outlined common mistakes are
risky and costly, but you now know how to avoid them and what to do

instead by using the best practices, which in turn can lead to:

0 Lower overall Azure costs

° Less manual effort for security and account management
Q Stronger security posture in the cloud

Q Improved application performance

And the list goes on...

&Z INTERCEPT

Which mistakes exist in your Azure Workshops
e nVI ro n m e nt? Interested to learn more about Azure? We have multiple free online

Request a Well-Architected Framework Scan and receive clear, prioritised Azure workshops to help you understand the ins and outs of Azure.
recommendations across the 5 pillars, aligned with Microsoft’s best practices.

— View all workshops
Apply them to reduce risk and errors, improve reliability, and control cloud costs,

et more value from the cloud as you scale.

ur free scan now! >

https://intercept.cloud/en-gb/scans/azure-infra-scan
https://intercept.cloud/en-gb/workshops

