
Avoid costly mistakes &
learn what to do instead

EBOOK

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Welcome!
Microsoft Azure is a great cloud platform, but even small
missteps can quickly turn into big problems.

At Intercept, we have been in the Azure game for years.
Along the way, we’ve seen plenty go wrong and repeated
poor decisions costing customers time and money.

That’s why we compiled a list of the most common Azure
mistakes so you don’t ever make them (again).

Let’s get started!

Introduction

Mistake 1:
Subscription
One subscription for everything

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Using a single subscription for all your environments (production, staging,

development, etc.) and applications causes more harm than good.

With just one subscription, it becomes hard to manage access,

and it’s easy to give developers too much control, which can lead

to accidental changes or deletes in production. Azure offers tons

of RBAC options, although they can’t fully protect you if

everything lives inside that one box: the subscription.

The solution? You probably guessed it; separate subscriptions per

environment.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

How you organise your cloud resources depends on your use case, though some

steps apply across most scenarios. Setting it up correctly keeps your environment

tidy, cost-efficient, and easier to manage :

1. Separate subscriptions per environment
Like Microsoft suggests, use separate subscriptions for development, testing,

and production. This keeps environments isolated, reduces risk, and helps

track costs per environment.

2. Resource Groups per app per environment
Create a Resource Group for each app in each environment. This keeps

resources organised, simplifies access management, and makes monitoring

and cost tracking easier.

3. *Service Groups to organise resources across
subscriptions
Like fancy tags, they allow you to organise and group resources across

subscriptions and resource groups (e.g., “Production apps”, “PCI Scope”,

“MyApp”).

*Service Groups are a new feature as of May 2025. Learn more here.

Be sure to follow these tips for your next app, and migrate existing resources

along the way.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

https://learn.microsoft.com/en-us/azure/governance/service-groups/overview

Clicking it all together

If you ever deployed resources in Azure, you know the Azure Portal is very intuitive and easy to start with.

However, ClickOps doesn’t scale and leads to more problems in the long run. Do you remember or document all

the things you click?

As your systems grow, it quickly turns into a “mission impossible” to remember or document every click.

The result? Mistakes and inconsistent environments.

Mistake 2:
ClickOps Nightmares

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Infrastructure as Code (IaC)

Relying on the Azure Portal to deploy and manage infrastructure manually

comes with risks and doesn't scale. Instead, move away from ClickOps to

Infrastructure as Code; a more reliable and efficient way to manage your

infrastructure.

There are many IaC tools widely available to achieve consistency, a single

source of truth, and simplified documentation. All in all, IaC makes

managing and scaling your infrastructure more efficient.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

</>

Do you want to know which IaC tool use for your

workloads? Take a look at the differences

between the available tools such as Azure Bicep,

ARM, Terraform, and more here.

https://5120218.fs1.hubspotusercontent-eu1.net/hubfs/5120218/Premium_Content/Whitepapers/Infrastructure_as_Code/Infrastructure_as_Code-EN.pdf

Mistake 3:
Cost Management

Let’s see why and solve that!

Preventing expensive bills

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Sudden, unexpected bills. You open your Azure invoice and blink. Did we really

spend that much?

Define a spending threshold for a subscription or

resource groups.

Set multiple thresholds (50%, 80%, 100%) to get early

warnings.

Track actual or forecasted costs over time; monthly,

quarterly, or yearly.

Trigger Action Groups (like email, Functions, or

Webhooks) when thresholds are reached

The solution
Your teams are deploying new resources, spinning up services; and when things are unmanaged, and there’s:

The result? Your Azure environment quickly spirals out of control, and costs skyrocket.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

No early warning for forecast overrun.

A lack of visibility across teams

Missed anomalies and fraud detection

Download now

Learn how to manage
and optimise costs in
our Azure Cost
Management
Whitepaper,
including Azure tools,
discount methods and
industry best practices.
Want a lower Azure bill? Check it out.

BEST PRACTICES AND REAL-LIFE EXAMPLES

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

https://5120218.fs1.hubspotusercontent-eu1.net/hubfs/5120218/Premium_Content/Whitepapers/Azure_Cost_Management/Whitepaper_Azure_Cost_Management_EN.pdf

How much does this app cost us per month?.

Who ownes this resource?

How much does the staging environment cost us?

As resources get added, managed by more people, it becomes tempting to forget “who made what”.

Which is why you need tags in Azure, which are metadata you apply to your resources. These key-value

pairs let you label and identify resources based on attributes relevant to your organisation.

Inconsistent tags make it hard to answer questions like, for example:

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Either forgotten or a big mess

Mistake 4:
Tags

Apply tags immediately from the start and implement them the right way.

Establish a tagging standard where you define a common set of tags for

every resource like these examples:

The environment (dev, staging, prod, etc.)

The owner (contact email)

The business unit (finance, sales, etc.)

Application (CRM)

Cost centre (global)

Service class (Tier 1, Tier 2, etc.)

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Mistake 5:
Naming

When you first start your journey in Microsoft Azure, it’s tempting to name

resources however you like. But the problem is that soon our naming has no

consistency across teams, apps and divisions. Consequently, it becomes hard to

find stuff, slowing down troubleshooting. Not to forget about the added

confusion, and the painful and challenging management of resources.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Name it anything and regret later

Note:

Not all resource names are allowed; like

having hyphens in storage account names.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Implement a Naming Standard:

Follow Microsoft’s recommended naming conventions and

abbreviations. An example is rg-webapp-database-dev.

Use the Azure Naming Tool to generate consistent names.

The key here is to select a naming convection and stick with it along the

road. And you can even enforce it using Azure Policy (which we explain

next) for consistency across teams.

Standards gone rogue

Mistake 6:
Azure Policy

Another common mistake is when organisations have all these

documents defining their standards, yet no one follows it. Teams

pick and choose what to apply, and before long, your

environment becomes the “Wild West”. Without enforcement,

naming conventions, tagging, etc. → configuration rules get

ignored, resulting in a spreading disease of “cloud chaos”.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

However, enforcing policies aren’t there only for stopping errors; it’s also about setting up

resources the way it should be like:

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Example
Let’s say you didn’t restrict deployments by

region or workload type. Now, someone

deploys a resource in a high-cost region or

spins up a VM much larger than needed.

Before you know it, your bill has jumped,

compliance requirements are at risk, and

managing the environment becomes a

nightmare.

Enforcing HTTPS over HTTP

Turning on SQL Data Encryption at rest

Multiple versions supported at once

Prevent non-compliant resources from being created (preferred).

Audit

Flag resources as non-compliant.

Modify

Automatically change resources (not recommended).

Use Azure Policies to enforce naming and tagging standards. Policies can have

multiple effects:

Mistake 7:
No monitoring or
alerting

When you deploy your resources in Azure, you must not forget about

monitoring and alerts. Because if something goes wrong, you might not

notice until users do, and you would want that; it’s always better to catch

issues before they affect your customers.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

When everything looks “fine”

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Monitor

Proactively monitor the health and performance of your

applications and resources in Azure Use Azure native-

monitoring tools such as Azure Monitor.

Alerts

Configure alerts for various metrics and logs that matter to your

apps.

Notifications

Receive notifications via email, SMS, or other channels.

This lets you act quickly and proactively, keeping your applications

healthy and users happy.

Mistake 8:
Unfiltered log
ingestion

We see this mistake occurring often with developers: sending more than

needed to Log Analytics. If all logs are sent straight to Log Analytics,

sensitive information can slip through and the volume of data can explode

quickly. By default, everything gets ingested, which can lead to costs you

would never think of.

Ingest first, regret later

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Sample log data to reduce volume; either before sending to

Application Insights (recommended) or during ingestion.

Set a daily workspace cap in Log Analytics to prevent

unexpected spikes in costs (great during high app activities

or many errors). Note that once the gap you set is reached,

additional logs aren’t captured, leading to data loss.

Also follow Microsoft’s recommendations for logging.

https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-sampling
https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-sampling
https://learn.microsoft.com/en-us/azure/azure-monitor/app/opentelemetry-sampling#ingestion-sampling-not-recommended
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/daily-cap
https://learn.microsoft.com/en-us/azure/azure-monitor/logs/best-practices-logs

Mistake 9:
Idle resources
Zombie resources

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

It’s easy to spin up resources in Azure, overprovision them or even forget that

they exist…Orphan resources are those created by someone “once upon a

time”, yet nobody knows who.

Sometimes resources get left behind when part of a larger

system is removed. The usual culprits are:

Orphaned resources don’t always cost you money, but they can.

At best, they create confusion; at worst, they become a security

risk.IP addresses no longer attached to machines

Virtual Machines (VMs) that aren’t deallocated

Unattached disks that continue to incur costs

Deleted VMs with backups that haven’t expired;

which you keep paying for

Empty subscriptions and resource groups.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Use Azure Cost Advisor to find orphaned

resources underutilised or any other idle

resources.

Use Azure Resource Graph to query for

resources that aren’t attached or are in an

unexpected state.

Regularly clean up orphaned resources

to reduce cost, improve security and

keep your environment clean.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Too many hands, too much
power

Mistake 10:
Not having RBAC
Strategies

Another mistake we often see is giving everyone high privileges in Azure,

ending up with owners all over the place. What started as convenience now

turned into risk. And instead of a least-privilege model, you’ve got an

environment where a single wrong click can take down production.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Use role assignments at the right scope

(management group, subscription, resource

group).

Limit Owner and Contributor roles to a few trusted

admins.

Create custom roles if the built-in ones are too

broad

Review role assignments regularly and remove

what’s no longer needed.

Use Privileged Identity Management (PIM) for

time-bound access instead of permanent rights.

Design your solution with the least privilege in mind, following a

Zero Trust approach where no one is presumably trusted. Start

with built-in roles in Azure and only grant permission that’s

needed for the job.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Mistake 11:
Managed
Identity

Too often, we still see teams juggling credentials. You create, store, rotate

and revoke them, until someone forgets. Azure SQL is still accessed with

plain SQL Authentication (username + password), and Key Vault with a

client ID and secret. Sooner or later, someone commits a secret by

accident.

Anything but the safe way

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Use Managed Identities in Azure. These allow you to let a

resource run with its “own” identity, managed entirely by Azure.

No usernames, passwords, client IDs, or secrets to worry about.

Assign a Managed Identity to an App Service, Function, or

other resource.

Grant that identity the right access to read secrets, connect to

databases, and more.

Completely passwordless.

In your code, use DefaultAzureCredential to handle

authentication automatically.

Mistake 12:
Not using KeyVault
references

Too often, we still see teams treating secrets like configuration. Key Vault exists

for a reason, yet credentials end up in env vars and config files, until someone

pushes them to source control or shares them with anyone who can read the app

settings. Over time, that “temporary” shortcut becomes a serious security risk.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Copy-paste credentials

Azure Key Vault is a SaaS service for securely storing and accessing

certificates, keys, and secrets.

Nonetheless, we still see teams leaving secrets in environment

variables or configuration files. This can lead to accidental exposure,

secrets being committed to source control, or credentials being

accessible to anyone with access to app configuration. Over time, it

becomes a serious security risk.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

We can safely store confidential data such as

passwords (called secrets in Azure), cryptographic

keys, certificates, and encryption keys in a

centralised place.

Use Key Vault References to securely point to secrets from locations

without storing them directly. This keeps sensitive data out of code and

app settings while allowing applications to retrieve secrets at runtime.

Can be used with App Services, Functions, and other Azure

Services.

Simplifies secret rotation; update the secret in key Vault, and

apps automatically get the new value.

Significantly reduces the risk of accidental exposure or commits.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Mistake 13:
Poorly designed
Networks

This one’s more of an architectural mistake, but we’ve seen one too many flat

network topologies in Azure. Trying to manage it almost feels like you’re

stumbling through a maze in the dark.

Doors left wide open

A better way is to design a hub-spoke model with a firewall: a central

point of control and the ability to filter or block unwanted traffic.

Central control: One place for ingress/egress

and shared services.

Consistent filtering: Inspect, allow/deny, and

log traffic centrally.

Strong segmentation: Isolate apps/

environments and reduce blast radius.

Predictable routing: UDRs force traffic

through the firewall/NVA.

Standard patterns: Repeatable spokes per

workload/subscription.

Better visibility: Clearer flow logs and faster

troubleshooting.
Net result: your network becomes easier to manage, more secure, and far less

chaotic, because it’s designed like a system, not grown like a patchwork.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Scale by guessing

Mistake 14:
Overprovisioning
resources

Allocating more resources than you actually need is an easy way to waste

money. We’ve seen plenty of customers who aren’t sure which SKU they

really need, so they give VMs extra CPUs and memory “just in case” and

end up paying for unused capacity. Add manual scaling on top of that, and

the bill grows fast.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Best practice 3: Use VM Scale Sets
Define clear scale rules (metrics +

thresholds).

Combine with load balancing so traffic

is spread evenly.

Best practice 4: Use Azure Advisor
Review recommendations regularly:

Right-sizing and cost suggestions

change as workloads change.

Track savings: Turn quick wins into

ongoing hygiene.

Follow these best practices:

Best practice 1: Authentication best practices
Right-size first: Begin with the smallest SKU that meets

baseline needs.

Enable autoscaling: Let demand drive capacity, not guesses.

Best practice 2: Choose the right VM
Know your workloads: Analyse what each application

needs in terms of CPU, memory, throughput, and network.

Use heatmaps: Visualise usage over time to spot

spikes, trends, and persistent waste.

Test different configurations: Compare smaller and

larger sizes to find a cost-effective sweet spot.

Note:
Right-sizing means matching resources to your needs, so you only pay for what you use. A practical

place to start is identifying underused instances (for example ~20–30% CPU utilization) and resizing

them down — this can often save 10–15% on the monthly bill.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

What happens if a natural disaster hits your Azure region?

What are the consequences if your environment goes down, or

customer data is lost?

How long can your business operate without access to critical

systems or data?

Mistake 15:
Backup and
disaster recovery

Ask yourself:

If you're unprepared, any disaster can directly affect business revenue or even

take you out of business.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Hope is not a plan

Use Azure Backup to protect your critical data. It allows you to create and restore backups of

your data and resources, to protect your environment against accidental deletion,

corruption, or malicious attacks.

Use Azure Site Recovery to replicate workloads and ensure business continuity in case of an

outage.

Consider geo- and es zone-redundancy: replicate data across regions (GRS, GTM, ASR) and

distribute workloads across availability zones (ZRS, zone-redundant services) to protect

against regional or zone-level failures.

Treat backup and disaster recovery in Azure as a routine part of your environment; by

testing regularly.

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Final thoughts
Azure offers endless and outstanding possibilities, but managing Azure

comes with plenty of pitfalls. Some of the outlined common mistakes are

risky and costly, but you now know how to avoid them and what to do

instead by using the best practices, which in turn can lead to:

And the list goes on…

Lower overall Azure costs

Less manual effort for security and account management

Stronger security posture in the cloud

Improved application performance

A
ZU

R
E

M
IS

TA
K

ES
 E

B
O

O
K

Which mistakes exist in your
environment?
Request a Well-Architected Framework Scan and receive clear, prioritised

recommendations across the 5 pillars, aligned with Microsoft’s best practices.

Apply them to reduce risk and errors, improve reliability, and control cloud costs,

so you get more value from the cloud as you scale.

Azure Workshops
Interested to learn more about Azure? We have multiple free online

Azure workshops to help you understand the ins and outs of Azure.

Request your free scan now!

View all workshops

https://intercept.cloud/en-gb/scans/azure-infra-scan
https://intercept.cloud/en-gb/workshops

