
Infrastructure
as Code with
Azure:
a practical guide to
automation and CI/CD

WHITEPAPER

Welcome!
As cloud computing continues to evolve, so do the methods

for deploying and managing Azure resources, offering options

for every need and preference. Whether you are just starting

your journey with Azure or an experienced user seeking to

optimise your workflows, understanding the different methods

available for resource deployment is helpful.

The Azure Portal is one of the most accessible and widely used

options. Serving as the initial touchpoint for many users, it offers

an intuitive graphical interface, making it easy to explore and

manage resources, especially for beginners. The portal offers a

visual experience that is particularly beneficial for initial learning

and troubleshooting, guiding users through the process of setting

up and managing resources.

However, as your Azure environment grows, relying on the portal,

often called ‘ClickOps’ can lead to challenges such as configuration

inconsistencies and a lack of a centralised documentation system.

This is where infrastructure as code (IaC) solutions come into play,

offering a more scalable and reliable approach to resource deployment.

In this e-book, we will dive into the various technologies, exploring

their unique features, benefits, and use cases. By understanding

the strengths and applications of each deployment method, you

will be better equipped to choose the right tools to optimise your

Azure experience.

Let’s get started!

Introduction

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Table of Content

ClickOps vs.
Infrastructure
as Code (IaC)

	

01

Choosing the right
Infrastructure as
Code language and
getting started

	

02

Mastering modularity
and reusability in
Azure Bicep

	

03

Deploying Infrastructure
with Verified Modules
and CI/CD

	

04

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

ClickOps vs.
Infrastructure
as Code (IaC):

In this chapter, we shed light on the discussion clickOps vs. Infrastructure as

Code (IaC): When does ClickOps work, and when does it not? After reading

this chapter, you will understand the challenges and limitations of ClickOps,

the key benefits of Infrastructure as Code (IaC), and you will know when to

use each graphical interface.

When is ClickOps as a
manual approach effective?

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

To answer that question, let’s start by asking why we use the Azure Portal in

the first place. If you are familiar with the expression ‘Friends don’t let friends

click in the Azure Portal,’ then it might ring a bell. But why? Is it a dislike for

graphical interfaces or simply a preference for command-line tools?

Not quite. The real reason is simple: when you first start with Azure, clicking

around helps you explore its features and get familiar with the platform. Even

as you gain experience, the portal remains useful for quick troubleshooting.

More importantly, a good user interface, like the Azure portal, offers a visual

experience with instant feedback, which many users appreciate.

The problem with ClickOps
Relying on the Azure Portal to deploy and manage infrastructure manually

comes with risks. Let’s look at concrete examples of why this can be problematic.

 Example 1:
Imagine you need to deploy 20 virtual machines (VMs) through the Azure

Portal, each requiring identical configurations to maintain consistency across

your environment. However, manually setting up each VM significantly increases

the risk of human error. A missed setting or accidental misclick can create

discrepancies, meaning that while all 20 VMs may be deployed, they might

not be identical. These inconsistencies can lead to unforeseen issues, making

troubleshooting and maintenance more complicated.

 Example 2:
Another major issue with ClickOps is the absence of a single source of truth.

Manually deploying infrastructure through the Azure Portal leaves no centralised

record or script documenting the exact configuration. This makes it challenging

to replicate environments or track the current state of your infrastructure. This

problem escalates when multiple administrators are involved, each applying their

own approach, which can lead to even further inconsistencies.

 Example 3:
Documentation is another challenge with ClickOps. Manually recording each

deployment and configuration step is tedious and error-prone. Without accurate

documentation, it becomes difficult to audit changes, track configurations or

onboard new team members effectively.

When does ClickOps work, and when does it not?

Relying on the Azure Portal to
deploy and manage infrastructure
manually comes with risks.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

The alternative:
The introduction of
Infrastructure as Code (IaC)
The above examples show that ClickOps does not always provide

the right capabilities. But what could be a suitable alternative?

One such alternative is Infrastructure as Code (IaC), which offers

a more reliable and efficient way to manage your infrastructure.

Tools like Azure Bicep address these challenges by ensuring

consistency, providing a single source of truth, and simplifying

documentation. Beyond improving reliability, IaC also makes

managing and scaling your infrastructure more efficient.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

What is Infrastructure as Code?
Advantage 1: Scalability in deployments
One of the key advantages of IaC is its ability to scale deployments efficiently. By defining infra-

structure through code, you can quickly deploy and manage multiple environments with consistency

and minimal errors. This is especially valuable for large-scale apps and environments that require

robust scalability. IaC also simplifies environment replication, maintaining consistency across

development, staging, and production, and reduces the common ‘it works on my machine’ issue.

Advantage 2: Consistency
Another key advantage of IaC is consistency. By defining infrastructure as code, you ensure

that every deployment is identical, reducing configuration drift and improving reliability. This

consistency extends to updates and changes as well: any modifications made to the code are

automatically applied across the infrastructure, ensuring all environments remain synchronised.

Infrastructure as Code (IaC) is a method of

managing and provisioning computing infra-

structure through machine-readable definition

files, rather than manually configuring physical

hardware or using interactive configuration tools.

This approach allows you to automate resource

management, monitoring, and provisioning,

eliminating the need for manual intervention.

Now that we understand what Infrastructure as

Code entails, let’s look into the potential benefits

it brings.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Coming back to the question:
When does ClickOps work, and when does it not?

In this chapter, we compared ClickOps and IaC, outlining their strenghts and limitations.

We saw that IaC automates infrastructure management using machine-readable code, offering

advantages like scalability, consistency, and reliability. It ensures uniform deployments across

multiple environments while reducing errors.

However, while IaC is ideal for large-scale, production environments, ClickOps still has its place.

ClickOps, relying on graphical interfaces, is useful for tasks like troubleshooting, investigation,

and learning. It lacks however the scalability and repeatability of IaC.

ClickOps therefore complements IaC, offering an intuitive way to manage and explore

infrastructure. If you are interested in finding the best IaC language for your needs, keep

reading as we will explore that in the next chapter.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

In this chapter, we will help you choose the right IaC language, show you

how to get started, and explain best practices like version control and

automation. By the end, you will know how to pick the best IaC language

for your environment, preferences, and project needs. Let’s dive in!

Choosing the
right Infrastructure
as Code language
and getting started

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

How to choose an IaC language?
To answer this question, you will need to follow several steps:

Step 1: Check supported languages in your environment
Before selecting an IaC language, it is important to verify what your

environment supports. Here is how to go about it:

	 Check official documentation:

Cloud providers regularly update their documentation to list supported

IaC tools. For example, Azure officially supports Bicep, Terraform, Pulumi,

and Azure Resource Manager (ARM) templates.

	 Review policy and compliance requirements:

Some organisations mandate the use of specific IaC languages for

security and governance purposes.

	 Examine existing infrastructure:

If your team already uses Terraform or ARM templates, it is recommended

to align with that choice for consistency.

	 Experiment in a test environment:

Set up a simple deployment with different IaC languages to see

which one aligns best with your workflow.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

1. param location string = ‘East US’
2. param storageAccountName string = ‘mystorageaccount’
3.
4. resource storageAccount ‘Microsoft.Storage/storageAccounts@2022-09-01’ =

{
name: storageAccountName

5. location: location kind: ‘StorageV2’
6. sku: { name: ‘Standard_LRS’ } }

Step 2: Choose the right language
The choice of an IaC language (e.g. Bicep, Terraform, or Pulumi) depends on

the cloud provider, work environment, and personal preferences. Choosing

the right language is the first challenge, as it shapes how you work and

determines the scalability of your solutions. Before selecting a language,

it is important to:

Different languages:
The languages we will discuss here are Bicep, Terraform, Pulumi, and the declarative

language of ARM templates

	 Language: Bicep  

If you are working with Azure, Bicep is an excellent choice. It is a domain-specific

language (DSL) designed to simplify ARM templates. Bicep is declarative, meaning

you define the desired state, and Azure takes care of the rest. It’s easier to read

and write than raw JSON-based ARM templates (mentioned below as well).

Additionally, Bicep integrates easily with Azure, keeping you closely aligned with

Microsoft’s ecosystem. The example below demonstrates how to deploy a storage

account using Bicep.

	 Verify which options your environment supports. Once you

know what’s available, you can proceed confidently.

	 Decide on the best fit based on your cloud provider,

organisational needs, and personal preference.

	 Research how to get started and ensure a smooth transition

to writing IaC.

Once you have identified the supported languages, you can explore each

option in detail to determine which aligns best with your requirements

and workflow.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

	 Language: Terraform

Terraform is cloud-agnostic, allowing you to define infrastructure across

multiple providers, not just Azure. Like Bicep, it is declarative but offers a

broader scope. Terraform uses HashiCorp Configuration Language (HCL),

which is easy to learn.

If you are working in or planning for multi-cloud environments, Terraform is

a strong choice, though some features may require a license. Alternatively,

OpenTofu, an open-source option governed by the Linux Foundation, offers

similar functionality as fully open resource. The example below deploys a

storage account through Terraform.

	 Language: Pulumi

Unlike Bicep and Terraform, Pulumi allows you to write infrastructure using

general-purpose programming languages like Python, TypeScript, and C#.

This makes it particularly appealing to developers who prefer imperative coding.

While Pulumi offers great flexibility, it requires a stronger programming knowledge.

The example below deploys a storage account through Pulumi (TypeScript).

 1. provider “azurerm” {
 2. features {}
 3. }
 4.  
 5. resource “azurerm_storage_account” “storage” {
 6. name = “mystorageaccount”
 7. resource_group_name = “myResourceGroup”
 8. location = “East US”
 9. account_tier = “Standard”
10. account_replication_type = “LRS”
11. }

 1. import * as azure from “@pulumi/azure”;
 2.  
 3. const storageAccount = new azure.storage.Account(“storage”, {
 4. name: “mystorageaccount”,
 5. resourceGroupName: “myResourceGroup”,
 6. location: “East US”,
 7. accountTier: “Standard”,
 8. accountReplicationType: “LRS”,
 9. });

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

	 Declarative language: ARM Templates

ARM templates are JSON-based and used to define Azure resources declaratively.

They offer deep integration with Azure but can be complex to write and maintain manually.

Bicep was introduced as an abstraction layer over ARM templates to simplify the experience.

The example below deploys a storage account through an ARM template.

Each of these tools has its strengths. If

you work exclusively in Azure, Bicep is often

the best choice. For multi-cloud flexibility,

Terraform is a great fit. If you prefer using

traditional programming languages, Pulumi

could be the solution you are looking for.

 1. {
 2. “$schema”: “https://schema.management.azure.com/schemas/2019-04-

01/deploymentTemplate.json#”,
 3. “contentVersion”: “1.0.0.0”,
 4. “resources”: [
 5. { 	
 6. “type”: “Microsoft.Storage/storageAccounts”,
 7. “apiVersion”: “2022-09-01”,
 8. “name”: “mystorageaccount”,
 9. “location”: “East US”,
10. “sku”: {
11. “name”: “Standard_LRS”
12. },
13. “kind”: “StorageV2”
14. }
15.]
16. }

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Tip 3: Start with simple deployment

	 Start with small resources, such as deploying a storage account

(as shown in the examples).

	 Test your scripts in a sandbox environment before deploying them

to production.

	 Follow best practices, such as using parameters and modular structures.

Also, explore Azure Verified Modules, which support both Bicep and

Terraform here.

Tip 4: Use version control and automation

	 Store your IaC code in a Git repository.

	 Implement Continuous Integration (CI) and Continuous Deployment/

Delivery (CD) (CI/CD) pipelines (e.g., Azure DevOps, GitHub Actions)

	 to automate deployments.

	 Validate and test your infrastructure code before applying any changes.

Step 3: Start writing Infrastructure as Code
Getting started with Infrastructure as Code (IaC) may seem overwhelming

but breaking it down into manageable steps will make it more easy.

Here are a few tips to help you get started successfully:

Tip 1: Set up your development environment:

	 Install the necessary tools and CLI for your chosen IaC language.

	 Ensure you have access to an Azure subscription.

	 Use a development environment like Visual Studio Code, which provides

extensive support for IaC languages. Install extensions such as the

Bicep Extension for VS Code, Terraform Extension by HashiCorp, or

Pulumi Extension to improve syntax highlighting, autocompletion,

and deployment capabilities.

	 Use the PowerShell Extension terminal in VS Code to run your scripts

and deploy infrastructure directly

2.	 Tip 2: Learn from official resources:

	 Microsoft provides excellent learning resources for Bicep.

You can complete step-by-step learning modules on Microsoft Learn.

	 Terraform and Pulumi also offer extensive documentation and hands-on

labs on their respective websites.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

https://azure.github.io/Azure-Verified-Modules/
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-bicep
https://marketplace.visualstudio.com/items?itemName=HashiCorp.terraform
https://marketplace.visualstudio.com/items?itemName=pulumi.pulumi-vscode-tools
https://learn.microsoft.com/en-us/training/paths/bicep-deploy/
https://learn.microsoft.com/training/paths/terraform-fundamentals/

Let’s return to the main question: How do you
choose the right IaC language and get started?
In this chapter, we have seen that transitioning from manual

processes to code can be challenging, but Infrastructure as Code

(IaC) is the future. Choosing the right language depends on your

environment and objectives:

As mentioned earlier, it is very important to first assess which

languages your environment supports. This ensures your choice

aligns with company policies, team workflows, and cloud provider

capabilities.

We also discussed the importance of starting small, experimenting,

and iterating. As you gain confidence, managing IaC will become

as second nature as assembling a server once was. While the days

of using a screwdriver may be behind us, the need for precision

and structure remains. Now that you have learned how to choose

the right IaC language and get started, you are ready for Chapter 3,

where we will explore modularity. This is the next logical step, as it

enables you to manage your infrastructure in a structured, reusable

way. Modularity ensures your infrastructure stays manageable over

time, especially as it grows and becomes more complex. Let’s go!

	 If you are working with Azure, Bicep is an excellent

choice.

	 If you need more flexibility, Terraform or Pulumi may

suit you better.

	 If you have existing ARM templates, Bicep could

simplify your workflow.

Choosing the right language
depends on your environment
and objectives.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Mastering
modularity
and reusability
in Azure Bicep
In this chapter, we will show you how to create reusable Azure

Bicep modules that keep your infrastructure standardised, scalable,

and manageable. Embracing modularity will help minimise errors,

improve collaboration, and ensure your infrastructure remains

well-structured and adaptable.

Let’s dive in!

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Let’s start with how modules standardise building blocks and simplify complex

configurations. Among the many tools available for IaC, Azure Bicep stands out for

its simplicity and modularity. Azure Bicep is a domain-specific language (DSL) for

deploying Azure resources declaratively, offering a more concise and user-friendly

syntax compared to traditional JSON ARM templates. A key feature of Azure Bicep is its

support for modules, which allows you to build standardised, reusable building blocks

for your infrastructure.

How to create and manage reusable
Azure Bicep modules for scalable and
standardised infrastructure?

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Azure Bicep provides a more intuitive way to define and deploy Azure

resources, making what was once a complex process with JSON ARM

templates much simpler. It eases infrastructure management for both

beginners and experienced users. However, the true strength of Azure

Bicep lies in its modularity.

Modularity

Modules in Azure Bicep are reusable compo-

nents that group together specific resources

and configurations. They allow you to create

standardised building blocks that can be

shared across different projects and teams.

By defining these modules, you encapsulate

the logic needed to deploy specific resources

and expose only the necessary parameters.

This modular approach helps ensure consis-

tency, reduces duplication, and streamlines

the management of complex configurations.

Understanding Azure
Bicep and its modularity

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Modularity in Azure Bicep allows you to create standardised building

blocks that can be reused across your organisation. These building blocks

can represent anything from a simple storage account to a complex multi-

tier application. By defining these components as modules, you ensure that

they are consistent and adhere to best practices.

For example, let’s consider a module for deploying a virtual network (VNet).

This module can include all the necessary configurations for creating a

VNet, including subnets, network security groups, and route tables. By

encapsulating these configurations in a module, you can easily reuse it

in different projects without having to redefine the VNet configuration

each time.

In this example, the `vnet.bicep` module contains the logic for deploying

a VNet with two subnets. By using this module, you can deploy the VNet

consistently across different environments with minimal effort.

Building standardised
building blocks

module vnet ‘vnet.bicep’ = {

name: ‘myVnetModule’

params: {

vnetName: ‘myVnet’

addressPrefix: ‘10.0.0.0/16’

subnets: [

{

name: ‘subnet1’

addressPrefix: ‘10.0.1.0/24’

}

{

name: ‘subnet2’

addressPrefix: ‘10.0.2.0/24’

}

]

}

}

 1. module vnet ‘vnet.bicep’ = {

 2. name: ‘myVnetModule’

 3. params: {

 4. vnetName: ‘myVnet’

 5. addressPrefix: ‘10.0.0.0/16’

 6. subnets: [

 7. 	{

 8. 	 name: ‘subnet1’

 9. 	 addressPrefix: ‘10.0.1.0/24’

10. 	},

11. 	{

12. 	 name: ‘subnet2’

13. 	 addressPrefix: ‘10.0.2.0/24’

14. 	}

15.]

16. }

17. }

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Simplifying complex
configurations
One of the key benefits of using modules in Azure

Bicep is the ability to simplify complex configurations.

Infrastructure as Code (IaC) can become quite

intricate, especially when working with large-scale

environments containing numerous interdependent

resources. Modules enable you to hide this complexity

behind a simplified interface, making it easier for users

to deploy and manage infrastructure.

For example, imagine you need to deploy a highly

available web application with multiple components,

such as virtual machines, load balancers, and

databases. Without modules, defining and managing

these resources can be overwhelming. However, by

encapsulating each component within a module, you

can significantly simplify the deployment process.

For example, imagine you need

to deploy a highly available

web application with multiple

components, such as virtual machines,

load balancers, and databases. Without

modules, defining and managing

these resources can be overwhelming.

However, by encapsulating each

component within a module,

you can significantly simplify the

deployment process.

 1. module vm ‘vm.bicep’ = {

 2. 	name: ‘myVmModule’

 3. 		 params: {

 4. 			 vmName: ‘myVm’

 5. 			 vmSize: ‘Standard_DS1_v2’

 6. 			 adminUsername: ‘adminUser’

 7. 			 adminPassword: ‘P@ssw0rd!’

 8. 			 }

 9. }

10. module lb ‘lb.bicep’ = {

11. 	name: ‘myLbModule’

12. 		 params: {

13. 			 lbName: ‘myLb’

14. 			 frontendIpConfiguration: {

15. 			 name: ‘myFrontendConfig’

16. 			 publicIpAddressId: ‘myPublicIp’

17. 			 }

18. 	}

19. }

20. module db ‘db.bicep’ = {

21. 	name: ‘myDbModule’

22. 		 params: {

23. 			 dbName: ‘myDb’

24. 			 skuName: ‘Standard_DTU2’

25. 			 maxSizeBytes: ‘1073741824’

26. 	}

27. }

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

The modularity of Azure Bicep not only simplifies infrastructure management

but also empowers teams within your organisation. By having a team of

subject matter experts build and maintain the modules, you can ensure

best practices are followed and that the modules stay up to date with the

latest developments.

Other teams within the organisation can then utilise these modules by

simply writing a main deployment file or parameter file, without needing

to understand all the intricate details. This approach enables non-experts

to deploy complex infrastructure with ease, reducing the learning curve

and boosting productivity.

Empowering teams
with reusable modulesIN

FR
A

ST
R

U
C

TU
R

E
 A

S
C

O
D

E
 W

IT
H

 A
ZU

R
E

To create a module in Azure Bicep, you define it

in a separate .bicep file and parameterise it as

needed. The module file contains the logic for

deploying a specific resource or set of resources.

You can then reference this module in your

main deployment file, passing in the necessary

parameters. For example, let’s create a module

for deploying a storage account:

Creating and
using modules

By following this approach, you can build a library of reusable modules that can be shared

across projects and teams. This fosters consistency and reduces the chances of errors or

misconfigurations.

// storage.bicep

 1. resource storageAccount ‘Microsoft.Storage/storageAccounts@2021-01-01’ = {
 2. name: params.storageAccountName
 3. location: resourceGroup().location
 4. sku: {
 5. name: ‘Standard_LRS’
 6. }
 7. kind: ‘StorageV2’
 8. }
 9. // main.bicep
10. module storage ‘storage.bicep’ = {
11. name: ‘myStorageModule’
12. params: {
13. storageAccountName: ‘mystorageaccount’
14. }
15. }

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Having a dedicated team of subject matter experts

to build and maintain the modules ensures they are of

high quality and follow best practices. Your team can

continuously update the modules as new features and

improvements are released, keeping your infrastructure

up to date.

By centralising module maintenance, you can quickly

address any issues or bugs that arise. This lightens the

load on individual teams, allowing them to focus on

delivering value to your organisation.

Maintaining and
updating modules

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Getting back to the question: How to create and
manage reusable Azure Bicep modules for scalable
and standardised infrastructure?
In this chapter, we focused on how to build, reuse, and manage

Azure Bicep modules to keep your infrastructure standardised,

scalable, and easy to manage. We saw how Azure Bicep’s modular

approach makes complex configurations easier, promoting

consistency and scalability across your organisation.

By keeping your modules in one place, teams with different

skill levels can deploy and manage infrastructure more easily,

which helps improve productivity and teamwork. This approach

makes your organisation more flexible and better able to meet

business needs.

By centralising module maintenance, teams of all skill levels

can deploy and manage infrastructure more efficiently, which

helps improve productivity and teamwork. This modular approach

makes your organisation more flexbile and better able to meet

business needs.

This chapter has equipped you with the tools to build and manage

reusable Azure Bicep modules for scalable infrastructure. In

the next chapter, we will take it a step further by focusing on

optimising these modules, improving efficiency, and making

them easier to maintain.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Deploying
Infrastructure
with Verified
Modules and CI/CD
This chapter builds on the previous ones, focusing on how to automatically

and reliably deploy infrastructure using Azure Verified Modules (AVM) and CI/

CD. AVM and CI/CD (via Azure DevOps or GitHub Actions) make infrastructure

management scalable, secure, and repeatable. In this chapter, we will show

how AVM and CI/CD can simplify deployment, reduce risks, and save time.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

How can AVM and CI/CD be used to
automate and scale infrastructure
deployment reliably?

Once you have chosen Azure Bicep (because we are passionate about Azure and

Infrastructure as Code), you goal is to make it scalable, repeatable, predictable, and, most

importantly, manageable. As the saying goes, “Automate, automate, automate” and that’s

exactly what we will do! By leveraging CI/CD, pipelines, and Azure Verified Modules, we

will transform this into a professional, efficient solution. Let’s see which steps to follow

to make it scalable, repeatable, predictable and manageable.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Firstly, let’s explore why an organisation might choose to adopt a

CI/CD automated solution. A good starting point is to consider the

pillars of the WAF and CAF frameworks, which we, as an organisation,

should strive to follow.

Using a main.bicep file alongside parameters helps ensure

these principles are adhered to while allowing certain values to

be adjusted via the parameter file. For example, you could modify

the Virtual Machine SKU, adjust backup policies, or enable/disable

specific services during the development stage.

With CI/CD, you can also validate pull requests using PSRule.Rules.

Azure, ensuring the bicepparam file is checked and validated

before deployment. This keeps best practices at the heart of

your infrastructure deployments.

Challenge: Making it scalable, repeatable,
predictable, and manageable

Azure Verified Modules (AVM) provide a standardised, reusable

method for deploying Azure resources, ensuring compliance

and adherence to best practices. Instead of manually defining

resources, AVM Bicep modules simplify deployments by leveraging

pre-verified, Microsoft-supported templates. In this capter, we will

explore how to deploy Azure infrastructure using Azure Verified

Modules with Azure DevOps Pipelines and GitHub Actions.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Azure Verified Modules provide:

	 Standardization: Microsoft-validated templates 				

	 ensure compliance with best practices.

	 Modularity: Encapsulate infrastructure

	 components into reusable modules.

	 Security and Compliance: AVM includes

	 built-in policies and guardrails.

	 Scalability: Reuse modules across multiple 					

	 environments and teams.

When working with multiple teams, source control is a must

for any organisation as it ensures that code is clean and well-

managed. Using a deployment pipeline removes the issue of git

sync mismatches or local test code accidentally being pushed to

production. Engineers must use pipeline validation before they

can push code, ensuring quality control.

Why Use Azure Verified Modules (AVM)?

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Structuring an AVM-Based Bicep deployment
Below is an example folder structure to help keep your CI/CD clean and organised.

Folder structure
A well-organised AVM-based Bicep project should follow this structure:

/infra

 ├── bicepparam

 │ ├── dev.bicepparam

 │ ├── acc.bicepparam

 │ ├── prod.bicepparam

 ├── main.bicep

 ├── azure-pipelines.yml

 ├── .github/workflows/deploy.yml
</>

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Using an Azure Verified Module in main.bicep

 1. targetScope = ‘subscription’
 2. @description(‘Customer Name (max 15 characters to prevent long resource names)’)
 3. @minLength(3)
 4. @maxLength(15)
 5. param customerName string
 6.
 7. @description(‘Deployment Location’)
 8. param location string
 9.
10. @description(‘Location Short Code (2-4 characters, e.g., “weu” for West Europe)’)
11. @minLength(2)
12. @maxLength(4)
13. param locationShortCode string
14.
15. @description(‘Environment Type’)
16. @allowed([
17.   ‘dev’
18.   ‘acc’
19.   ‘prod’
20.])
21. param environmentType string
22.
23. // Resource Group Naming Convention
24. var resourceGroupName = ‘rg-${customerName}-${environmentType}-${locationShortCode}’
25.
26. // Storage Account Name
27. @description(‘Storage Account Name (must be unique, 3-24 characters, lowercase)’)
28. @minLength(3)
29. @maxLength(24)
30. param storageAccountName string
31.
32. // Azure Verified Modules - Start Here
33.
34. module createResourceGroup ‘br/public:avm/res/resources/resource-group:0.4.1’ = {
35.   name: ‘create-resource-group’
36.   params: {
37.     name: resourceGroupName
38.     location: location

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

39.   }
40. }
41.
42. module storageAccount ‘br/public:avm/res/storage/storage-account:0.17.0’ = {
43.   name: ‘create-storage-account’
44.   scope: resourceGroup(resourceGroupName)
45.   params: {
46.     name: storageAccountName
47.     location: location
48.     kind: ‘StorageV2’
49.     skuName: ‘Standard_LRS’
50.   }
51. }
52.
53. Environment-Specific Parameters (bicepparam/dev.bicepparam)
54. using ‘./main.bicep’
55.
56. param customerName = ‘contoso’
57. param location = ‘westeurope’
58. param locationShortCode = ‘weu’
59. param environmentType = ‘dev’
60.
61. // Derived storage account name (matches Azure’s naming rules)
62. param storageAccountName = ‘st${customerName}${environmentType}${locationShortCode}’

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Deploying AVM Modules using Azure DevOps Pipelines
Pipeline YAML (azure-pipelines.yml)

 1. name: ‘Infrastucure Deployment’
 2.
 3. trigger:
 4. - main
 5.
 6. pool:
 7.   vmImage: ubuntu-latest
 8.
 9. parameters:
10.   - name: subscriptionId
11.     displayName: ‘Subscription Id’
12.     type: string
13.     default: ‘’
14.
15.   - name: environmentType
16.     displayName: ‘Deployment Environment’
17.     type: string
18.     default: ‘dev’
19.     values:
20.       - dev
21.       - acc
22.       - prd
23.
24. steps:
25. - task: AzureResourceManagerTemplateDeployment@3
26.   inputs:
27.     azureResourceManagerConnection: <azureResourceConnectionId>)’
28.     deploymentScope: ‘Subscription’
29.     subscriptionId: ${{ parameters.subscriptionId }}
30.     location: ‘westeurope’
31.     templateLocation: ‘Linked artifact’
32.     csmFile: ‘./infra/main.bicep’
33.     csmParametersFile: infra/bicepparam/${{ parameters.environmentType }}.bicepparam
34.     deploymentMode: ‘Incremental’

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

GitHub Actions

If your organisation is more comfortable using GitHub Actions, We have you covered. Here is an example workflow.

Deploying AVM Modules Using GitHub Actions

Workflow YAML (.github/workflows/deploy.yml)

 1. name: ‘Infrastructure Deployment’
 2.
 3. on:
 4. workflow_dispatch:
 5. inputs:
 6. subscriptionId:
 7. description: ‘Azure Subscription ID’
 8. required: true
 9.
10. environment:
11. description: ‘Deployment Environment’
12. required: true
13. type: choice
14. options:
15. - dev
16. - acc
17. - prd
18.
19. permissions:
20. id-token: write
21.
22. jobs:
23. deploy:
24. runs-on: ubuntu-latest
25. env:
26. AZURE_SUBSCRIPTION_ID: ${{ inputs.subscriptionId }}
27. AZURE_ENVIRONMENT: ${{ inputs.environment }}
28.
29. steps:
30. - name: Checkout repository
31. uses: actions/checkout@v4
32.

33. - name: Azure Login
34. uses: azure/login@v1
35. with:
36. client-id: ${{ secrets.AZURE_CLIENT_ID }}
37. tenant-id: ${{ secrets.AZURE_TENANT_ID }}
38. subscription-id: ${{ env.AZURE_SUBSCRIPTION_ID }}
39.
40. - name: Deploy Bicep Template
41. uses: azure/arm-deploy@v1
42. with:
43. subscriptionId: ${{ env.AZURE_SUBSCRIPTION_ID }}
44. scope: ‘subscription’
45. region: ‘westeurope’
46. template: ./infra/main.bicep
47. parameters: “./infra/bicepparam/${{ env.AZURE_ENVIRONMENT }}.bicepparam”
48. deploymentMode: Incremental

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

While using the Azure Verified Modules is the way to go, let’s look

at some best practices regarding authentication and validation:

Best practice 1: Authentication best practices
	 Use OIDC (OpenID Connect) for GitHub Actions 	

	 instead of Service Principal passwords.

	 [GitHub Docs - OIDC]

	 Use Managed Identity for Azure DevOps

	 where possible.

	 [Microsoft Learn – Workload Identity Service]

Best practice 2: Validation before deployment
	 Run az bicep build to validate module syntax

	 before deployment.

	 Use az deployment sub what-if to preview

	 changes before applying.

Best practice 3: Reusability and scalability
	 Store modules in an Azure Bicep Registry for

	 centralized management.

	 Use AVM to leverage pre-tested, best-practice 					

	 modules instead of custom ones.

Best Practices for AVM Deployment (3)

Note:
Using the –what-is flag will not work within a pipeline,

as it requires you to complete a key entry to validate

the what if with [Y] [Microsoft Learn].

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

https://docs.github.com/en/actions/security-for-github-actions/security-hardening-your-deployments/configuring-openid-connect-in-azure
https://learn.microsoft.com/en-us/azure/devops/pipelines/release/configure-workload-identity
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/deploy-what-if?tabs=azure-powershell%2CCLI

Using Azure Verified Modules helps make infrastructure deployments in

Azure more modular, reusable, and compliant. By integrating Azure DevOps

Pipelines and GitHub Actions, teams can automate deployments while

following best practices. Both tools support CI/CD for deploying AVM

modules. Which one you choose depends on your environment:

	 Use Pipelines if you are using Azure DevOps.

	 Use GitHub Actions if your code is on GitHub.

Getting back to the main question:
How can AVM and CI/CD be used to
automate and scale infrastructure
deployment reliably?

Lastly, now that we covered how AVM and CI/CD can

automate and scale deployments, let’s explore some

next steps to further improve and expand your setup:

 	 Explore additional AVM modules for networking,

compute, and security.

 	 Implement CI validation using the Bicep linter and

what-if analysis.

	 Store AVM modules in an Azure Bicep Registry

to encourage broader adoption.

By using AVM Bicep modules in CI/CD workflows, you

can create a scalable, compliant, and maintainable

cloud infrastructure, while also improving efficiency

and security.

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Your path to a scalable and
efficient Infrastructure

Bringing it all together:

In this e-book, you have discovered that while ClickOps is useful for

learning and troubleshooting, Infrastructure as Code (IaC) is the key to

scalable deployments. By using pipelines and CI/CD, you can standardise

your deployments, ensuring consistency and reliability.

We have explored various technologies such as Terraform, Pulumi, ARM

Templates, and Azure Bicep, all of which help build scalable, compliant,

and maintainable cloud infrastructure.

Azure Verified Modules (AVM) improve the modularity, reusability, and

compliance of Azure infrastructure deployments, making them easier

to manage and maintain.

Integrating Azure DevOps Pipelines and GitHub Actions enables teams

to automate deployments while adhering to best practices. If your

codebase resides on GitHub, GitHub Actions is the perfect fit; otherwise,

Azure DevOps Pipelines provides a solid alternative.

Incorporating AVM Bicep modules into your CI/CD workflows allows

you to build robust, agile cloud infrastructure that fosters innovation

and responsiveness to change.

With the insights from this e-book, you are now equipped to efficiently

manage your infrastructure with IaC. By adopting CI/CD and AVM, you can

quickly set up secure, reusable cloud environments that improves flexibility,

consistency, and adaptability to change, while following best practices.

We hope you have enjoyed this e-book and that it has helped you

optimise and future-proof your infrastructure management!

Team Intercept

IN
FR

A
ST

R
U

C
TU

R
E

 A
S

C
O

D
E

 W
IT

H
 A

ZU
R

E

Free Infrastructure Scan
Did you know you are eligible for a free Infrastructure Scan?
A free Infrastructure scan gives you immediate insight into the performance,

vulnerabilities, and cost-efficiency of your infrastructure. Discover vulnerabilities

for the future before they lead to unnecessary expenses!

Optimise your Azure infrastructure now to avoid expensive required fixes later.

You will receive clear recommendations to strengthen your environment in

line with Microsoft’s best practices.

Why this matters
Infrastructure issues often go unnoticed... until it’s too late. Act now to prevent

costly disruptions, scaling problems, or system failures. Contact us today to

get started with your free Infrastructure Scan!

Workshop DevOps on Azure
Master this Azure DevOps workshop to accelerate and streamline your software

delivery. The skills you will gain during this workshop will help you release faster,

reduce errors, and strengthen collaboration across your organisation.

Ready to work more agile?

 Request your free Infrastructure Scan now!

 Sign up now for free!

https://intercept.cloud/en-gb/scans/azure-infra-scan
https://intercept.cloud/en-gb/workshops/devops-on-azure

	Knop 1:
	Knop 23:
	Knop 25:
	Knop 26:
	Knop 28:
	Knop 29:
	Knop 30:

